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Abstract
Characterization of obsessive–compulsive disorder (OCD), like other psychiatric disorders, suffers from heterogeneities
in its symptoms and therapeutic responses, and identification of more homogeneous subgroups may help to resolve
the heterogeneity. We aimed to identify the OCD subgroups based on resting-state functional connectivity (rsFC) and
to explore their differences in treatment responses via a multivariate approach. From the resting-state functional MRI
data of 107 medication-free OCD patients and 110 healthy controls (HCs), we selected rsFC features, which
discriminated OCD patients from HCs via support vector machine (SVM) analyses. With the selected brain features, we
subdivided OCD patients into subgroups using hierarchical clustering analyses. We identified 35 rsFC features that
achieved a high sensitivity (82.74%) and specificity (76.29%) in SVM analyses. The OCD patients were subdivided into
two subgroups, which did not show significant differences in their demographic and clinical backgrounds. However,
one of the OCD subgroups demonstrated more impaired rsFC that was involved either within the default mode
network (DMN) or between DMN brain regions and other network regions. This subgroup also showed both lower
improvements in symptom severity in the 16-week follow-up visit and lower responder percentage than the other
subgroup. Our results highlight that not only abnormalities within the DMN but also aberrant rsFC between the DMN
and other networks may contribute to the treatment response and support the importance of these neurobiological
alterations in OCD patients. We suggest that abnormalities in these connectivity may play predictive biomarkers of
treatment response, and aid to build more optimal treatment strategies.

Introduction
Individuals with obsessive–compulsive disorder (OCD)

are characterized by recurrent intrusive thoughts
accompanied by repetitive behaviors that provide tran-
sient relief1–4. However, OCD individuals present differ-
ent clinical characteristics, including different

comorbidities, symptom dimensions, or durations of ill-
ness. These heterogeneities complicate our understanding
and treatment of the disorder. In patients with OCD,
more than half of individuals are not responsive to the
recommended first-line medication, such as selective
serotonin reuptake inhibitors (SSRIs), with or without
cognitive behavioral therapy (CBT)5,6. Some patients are
more responsive to dopaminergic or glutamatergic agent
pharmacotherapy, and ~30% are considered refractory
patients7–12. These differences in therapeutic responses
and prognosis between patients have encouraged
researchers to identify homogeneous subgroups among
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OCD patients, which may improve treatment strategy by
resolving heterogeneity. In recent decades, studies have
focused on phenotype-based subtypes and the neurobio-
logical differences and treatment responses between those
subtypes13,14. However, these studies suffer from incon-
sistent results, possibly because several different dys-
functional mechanisms may present the same phenotype.
Thus, more recent studies have examined subgroups
based on the brain dysfunction of individuals and have
shown promise in predicting treatment response15–17

In the psychiatric field, resting-state functional MRI
(rsFMRI) is a useful neuroimaging modality to examine
brain function capacity for patients because individuals
often report difficulties in maintaining their attention and
motivation during neurocognitive tasks14,18–22. Consistent
evidences of aberrant DMN from the previous studies
suggested that default mode network (DMN), as a pro-
minent large-scale brain network, has a crucial role in
psychological processes related to the pathophysiology of
OCD23–29. Moreover, a recent meta-analysis study found
that OCD individuals exhibited hypoconnectivity between
DMN and salience network, in addition to a compre-
hensive dysconnectivity within DMN30. These findings
suggest that rsfMRI-based features may effectively identify
OCD subgroups with different neurobiological
abnormalities.
However, most of these studies were focused on sig-

nificant group differences between patients and controls.
Such analyses failed to reflect the dysfunctional neural
mechanisms at the individual level and underestimated
brain features that may identify certain OCD subgroups.
Moreover, these studies applied a standard univariate
approach, which was unable to capture the dynamic
interactions within and between various neural systems.
For the past few years, researchers have attempted to
develop analytical methods that overcome such limita-
tions, and machine-learning analyses have been one of
those methods31,32. Owing to its advantages, few recent
OCD studies have applied machine-learning algorithms
with rsFC17,33,34. However, these studies have one or more
of the following limitations: a relatively small sample size,
involvement of medicated OCD patients in the analyses,
or the absence of therapeutic response information.
In this study, we aimed to explore the neural features

that best discriminate OCD patients from healthy controls
(HCs) and form OCD subgroups based on these rsFC
features via machine learning. Then, we examined each
OCD subgroup in terms of various clinical characteristics,
including symptom trajectory after treatment. We hypo-
thesized that most rsFC features that differentiate
between OCD patients and HCs are those frequently
reported as dysfunctional circuits, mainly included in
DMN. Furthermore, we also speculated that the OCD
subgroups with more deficits in those rsFC demonstrate

worse at the therapeutic improvement after 16 weeks
follow-up.

Methods
Participants
This study involved 107 medication-free OCD patients

recruited from the OCD clinic at Seoul National Uni-
versity Hospital (SNUH) between May 2010 and October
2018. All patients with OCD fulfilled the Diagnostic and
Statistical Manual of Mental Disorders-IV criteria for
OCD as assessed by certified psychiatrists35. Of 107
medication-free patients, 45 patients were drug naive, and
the remaining 62 patients had been medication free for at
least 4 weeks before entering the study36. For each OCD
patient, the Yale-Brown Obsessive–Compulsive Scale (Y-
BOCS), Hamilton Rating Scale for Anxiety (HAM-A), and
Hamilton Rating Scale for Depression (HAM-D) were
assessed to measure the severity of obsessive–compulsive
symptoms and accompanying anxiety and depressive
symptoms37–39. The current study shares participants
with a previously published study, and more details have
been included in that study30. Prior to their participation,
written informed consent was obtained from all partici-
pants after receiving a complete description of the study.
This study was conducted in accordance with the
Declaration of Helsinki and approved by the Institutional
Review Board of SNUH.
After completing the baseline clinical assessments and

MRI, the OCD patients were provided with the usual
treatment, including pharmacotherapy treatment with
SSRIs and CBT. In the 16-week follow-up clinical
assessment, a total of 76 patients underwent clinical ree-
valuation with the Y-BOCS, HAM-A, and HAM-D.
Responders to the initial therapeutic treatment were
defined as a ≥ 35% improvement in the Y-BOCS
scores10,40–42. Information on medications and CBT
over the 16 weeks was obtained from a thorough review of
medical records by a certified psychiatrist. Among the 76
OCD patients, there were 31 responders and 45 non-
responders at the follow-up visit.

Image acquisition and preprocessing
All image data were acquired using a 3 T scanner

(Magnetom Trio Siemens, Erlangen, Germany). All par-
ticipants were asked to abstain from caffeine, smoking,
and other stimulants before the scan. High-resolution T1-
weighted anatomical images were acquired using a three-
dimensional Magnetization Prepared Rapid Gradient
Echo sequence with the following parameters: repetition
time (TR)= 1670 ms, echo time (TE)= 1.89 ms, voxel
size= 1.0 × 0.98 × 0.98 mm3, field of view (FoV)=
250mm, flip angle (FA)= 9°, and 208 slices. Resting-state
functional magnetic resonance imaging (rsfMRI) images
were acquired with the following parameters: TR=
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3500 ms, TE= 30ms, voxel size= 1.9 × 1.9 × 3.5 mm3,
FoV= 240mm, FA= 9°, 35 slices, 6 minutes 58 seconds,
and 116 volumes. All participants were instructed to relax
their mind with eyes closed and minimize their movement
to as little as possible. To ensure that participants did not
fall asleep, they were reminded to stay awake immediately
before the rsfMRI acquisition using a microphone, and
questionnaires were provided after the scan.
The Statistical Parametric Mapping toolbox version 12

(SPM 12; Wellcome Department of Cognitive Neurology,
London, UK; http://www.fil.ion.ucl.ac.uk/spm) and the
CONN toolbox version 18a43, http://www.nitrc.org/
projects/conn/) were used for preprocessing with follow-
ing steps. After discarding the first four volumes due to
magnetic field saturation and participants’ adaptation to
the circumstance, 112 volumes were left for each subject.
The remaining functional images were corrected for slice-
timing discrepancies and realigned to the first scan via
rigid-body alignment44,45. All subjects included in the
present study exhibited spatial movement <2.0 mm and
rotation movement <2 degree in any direction and no
significant group differences in the mean head motion
were observed (OCD= 0.157 ± 0.087, HCs= 0.173 ±
0.137) 46,47.
Using a nonlinear warping algorithm, both structural

and functional images were subsequently normalized to
the Montreal Neurological Institute (MNI) template and
resampled to 2.0 × 2.0 × 2.0 mm348. To increase signal-to-
noise ratio, the residual images were spatially smoothed
with a 4 mm full-width at half-maximum Gaussian ker-
nel49. Next, smoothed images underwent the nuisance
regression using a component-based noise correction
method [CompCor], including principal components,
which obtained from the cerebrospinal fluid and the white
matter masks segmented from T1-weighted images, six
head motion and their first derivatives, linear detrending,
and temporal band-pass filtering (0.008–0.09 Hz) in order
to clean up noise signals 50,51.

fMRI connectivity feature extraction and selection
fMRI data acquisition and preprocessing are described

in the Supplementary Methods section in the supplement.
To generate a whole-brain correlation matrix for each
individual, mean blood oxygen level-dependent time ser-
ies were extracted from the 264 spherical network-defined
regions of interest (ROIs) with a 10-mm diameter52.
These ROIs had been established and extensively vali-
dated based on rsFC and meta-analysis of task fMRI
studies. These ROIs belonged to the default mode (n=
58), salience (n= 18), cingulo-opercular (n= 14), fronto-
parietal (n= 25), dorsal and ventral attention (n= 20),
visual and auditory (n= 44), somatosensory-motor (n=
35), and subcortical (n= 13) networks. ROIs that belon-
ged to the cerebellar (n= 4) and undefined (n= 30)

networks were excluded from the current study. The
interregional functional connectivity strength between
ROIs was calculated by computing Pearson’s bivariate
correlations and transforming the correlation coefficients
to the normal distribution using Fisher’s z transformation.
To choose the features used in the hierarchical clus-

tering analysis, we used feature selection consisting of the
following three steps: 1. selecting the lower subdiagonal
features of aforementioned ROI-ROI matrix to avoid
redundant connectivity with the same ROIs, 2. identifying
the feature with significant group differences using t test
with thresholding, and3 applying SVM analysis to find the
top-ranked 35 features that best discriminate OCD
patients from HCs, along with k-fold cross-validation
approaches. After extracting the aforementioned ROI to
ROI connectivity components (features) for each indivi-
dual, we selected only the lower subdiagonal features of
ROI to ROI matrix to avoid redundant connectivity with
the same ROIs53,54. Among the 34716 rsFC features, we
additionally applied an independent two-sample t test to
individual correlation matrices to identify the rsFC fea-
tures with significant differences between the OCD
patients and HCs (p < 0.005). Each ROI was visualized
using BrainNet Viewer (https://www.nitrc.org/projects/
bnv/), and rsFC between two ROIs was presented with a
circle map55,56. To represent the weight of each ROI, the
node degree was calculated 57.

Machine-learning analysis
To select the features with the greatest discriminative

power, the SVM algorithm implemented in the Statistics
Toolbox of the MATLAB software package (ver. R2017a;
MathWorks Inc., Natick, MA, USA) and LIBSVM (http://
www.csie.ntu.edu/tw/cjlin/libsvm/) was used. SVM is the
most popular algorithm in supervised machine learning,
and it performs a binary classification by maximizing the
margin, allowing for an optimal separation of the training
samples in complex and high-dimensional data 53,58,59.
In the SVM analysis using the radial basis function

kernel, the hyperparameters y and C were tuned. To
resolve the problems of overfitting, we applied a k-fold
cross-validation approach (k= 5). Specifically, 217 parti-
cipants were randomly split into fivefolds. Then, func-
tional connectivities of 174 individuals were randomly
used to optimize a trained model to discriminate OCD
patients and HCs, whereas those of 43 individuals were
used for the cross-validation of the model. Such cross-
validation process was repeated 10 times with different
random splits into folds. Through the process, we selected
the top-ranked 35 features that best discriminate the
OCD patients from the HCs. With the newly selected 35
features of 217 individuals, we conducted the fivefold
cross-validation again to define the average accuracy of
the 10 iterations.
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To create OCD subgroups with similar brain patterns of
the 35 connectivity features, we used agglomerative
hierarchical clustering implemented in a machine-
learning library, scikit-learn package (v0.20.0) in Python
version 2.7.6 (Python Software Foundation)60,61. As an
unsupervised machine-learning approach, agglomerative
hierarchical clustering is a technique that builds a hier-
archy of clusters with a bottom–up approach by calcu-
lating a dissimilarity matrix describing the Euclidean
distance between pairs of samples in the feature dimen-
sion. The optimal number of subgroups was determined
using the dendrogram. The overview of the analysis
involved in the study is illustrated in Fig. 1.

Statistical analysis
To compare the demographic and clinical character-

istics between groups (OCD patients vs. HCs; between
OCD subgroups), independent sample t tests or χ2 tests
were conducted using SPSS v.23.0 (IBM). To test the
assumption of normality and homogeneity of variance, the
Levene’s test and Shapiro–Wilk test were employed. Data
variance was similar in both within and between the
groups (all ps > 0.15). To evaluate the distribution of
absences at the 16-week follow-up visit in each OCD
subgroup, one-way analysis of variance was applied.

Results
Demographic and clinical characteristics
The demographic and clinical characteristics of indivi-

duals with OCD and HCs are summarized in Table 1.
There were no statistically significant differences in the

demographic backgrounds, including age, sex, handedness
or years of education, between individuals with OCD and
HCs.

Classification between OCD patients vs HCs
The ROIs of the top 35 features that best discriminated

individuals with OCD and HCs consisted of the pre-
cuneus, frontal regions, insula, parahippocampal gyrus,
precentral/postcentral gyrus, supplementary motor area,
angular gyrus, occipital cortex, temporal regions, and
putamen. The classification accuracy of the features was
79.30%. The sensitivity and specificity were 82.74% and
76.29%, respectively. The visualization and the list of the
selected features are presented in Figure S1 in the
supplement.

Clustering OCD subgroups
According to the hierarchical clustering analyses, two

cluster solutions were optimal for defining relatively
homogeneous subgroups, whereas the sample size in the
individual clusters was sufficient for statistical power
(Figure S2 in the supplement). The demographic and
clinical characteristics of individuals in each OCD sub-
group are summarized in Table 2. There were no sig-
nificant differences in either the demographic/clinical
characteristics or therapeutic interventions during the 16-
week period between the two subgroups. However, the
two subgroups demonstrated significant differences in
clinical improvement at the 16-week follow-up clinical
assessment. Subsequently, two OCD individuals were
removed because they were considered outliers (greater

Fig. 1 The schematic flowchart of the study. The schematic flowchart of the study, including the feature extraction as time-series extraction from
227 functional regions of interest (ROIs) from Power et al., 2011, support vector machine (SVM), and clustering analyses.
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Table 1 Demographic and clinical characteristics of
patients with obsessive–compulsive disorder (OCD) and
healthy controls (HCs).

HCs (n= 110) OCD (n= 107) Statistical

analysis

Mean (SD) Mean (SD) χ2/t p value

Sex (male/female) 69/41 72/35 0.496 0.569

Handedness (right/

left)

104/6 99/8 0.367 0.591

Age (years) 24.92 (6.75) 25.17 (6.57) −0.276 0.783

Education (years) 14.35 (1.83) 14.18 (2.14) 0.631 0.529

IQ 112.89 (12.29) 110.79 (11.71) 1.292 0.198

Baseline

Baseline YBOCS_T n.a. 26.64 (6.33)

Baseline YBOCS_O n.a. 14.08 (2.99)

Baseline YBOCS_C n.a. 12.56 (4.26)

Baseline HAM-A n.a. 10.92 (5.98)

Baseline HAM-D n.a. 11.82 (6.13)

dYBOCS

Contamination n.a. 34 (31.8%)

Hoarding n.a. 0 (0.0%)

Symmetry n.a. 21 (19.6%)

Harm & violence n.a. 20 (18.7%)

Sexual & religious n.a. 9 (8.4%)

Miscellaneous n.a. 23 (21.5%)

Comorbidity

None n.a. 61 (57.0%)

Depressive disorder n.a. 37 (34.6%)

Bipolar disorder n.a. 6 (5.6%)

Personality disorder n.a. 3 (2.8%)

16-week follow-upa

16-week YBOCS_T n.a. 18.42 (7.73)

16-week YBOCS_O n.a. 9.91 (4.02)

16-week YBOCS_C n.a. 8.49 (4.20)

16-week HAM-A n.a. 6.00 (4.81)

16-week HAM-D n.a. 6.75 (5.18)

dYBOCS dimensional Yale-Brown Obsessive–Compulsive Scale, HAM-A Hamilton
Rating Scale for Anxiety, HAM-D Hamilton Rating Scale for Depression, IQ
intelligent quotient, YBOCS_T Yale-Brown Obsessive–Compulsive Scale total
score, YBOCS_O Yale-Brown Obsessive–Compulsive Scale obsession score,
YBOCS_C Yale-Brown Obsessive–Compulsive Scale compulsion score, n.a. not
applicable.
aNumber of missing data were 31.

Table 2 Demographic and clinical characteristics of
patients with obsessive–compulsive disorder (OCD)
subgroups.

OCD

subgroup 1

(n= 38)

OCD

subgroup 2

(n= 69)

Statistical

analysis

Mean (SD) Mean (SD) χ2/t p value

Sex (male/female) 30/8 42/27 3.638 0.084

Handedness (right/

left)

33/5 66/3 5.887 0.103

Age (years) 24.79 (6.20) 25.38 (6.80) −0.441 0.660

Education (years) 14.34 (2.16) 14.09 (2.14) 0.558 0.558

IQ 113.21 (11.65) 109.45 (11.61) 1.602 0.112

Age of onset (years) 18.79 (6.55) 18.12 (6.60) 0.506 0.614

Duration of illness

(years)

6.00 (5.34) 7.26 (5.79) −1.108 0.270

Baseline

Baseline YBOCS_T 26.84 (6.39) 26.54 (6.35) 0.238 0.812

Baseline YBOCS_O 14.05 (3.39) 14.10 (2.77) −0.081 0.936

Baseline YBOCS_C 12.79 (4.28) 12.43 (4.28) 0.410 0.682

Baseline HAM-A 9.55 (5.33) 11.68 (6.23) −1.771 0.079

Baseline HAM-D 11.18 (6.10) 12.17 (6.17) −0.798 0.427

dYBOCS 3.096 0.542

Contamination 14 (36.8%) 20 (29.0%)

Hoarding 0 (0.0%) 0 (0.0%)

Symmetry 9 (23.7%) 12 (17.4%)

Harm & violence 4 (10.5%) 16 (23.2%)

Sexual & religious 3 (7.9%) 6 (8.7%)

Miscellaneous 8 (21.1%) 15 (21.7%)

Comorbidity 1.979 0.577

None 25 (65.8%) 36 (52.2%)

Depressive disorder 10 (26.3%) 27 (39.1%)

Bipolar disorder 2 (4.8%) 4 (6.2%)

Personality disorder 1 (2.4%) 2 (3.1%)

Medication use

SSRI 23 (88.5%) 45 (90.0%) 0.043 1.000

Antipsychotics 4 (15.4%) 4 (8.0%) 0.990 0.434

Mood stabilizer 1 (3.8%) 2 (4.0%) 0.001 1.000

Benzodiazepines 5 (19.2%) 10 (20.0%) 0.006 0.596

CBT 5 (19.2%) 11 (22.0%) 0.079 1.000
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than two standard deviations) in the Y-BOCS total score.
Although two subgroups did not present any significant
clinical characteristics in the baseline, they showed sig-
nificant differences in the 16-week follow-up assessment
scores on the Y-BOCS total and compulsions subscale
and HAM-D (t=−2.234, p= 0.029; t=−2.095, p=
0.041; and t=−2.002, p= 0.049, respectively). In terms of
clinical improvement, OCD subgroup 1, compared with
OCD subgroup 2, demonstrated significant improvements
in the Y-BOCS total scores, Y-BOCS obsession scores, Y-
BOCS compulsion scores and HAM-D scores (t= 2.723,
p= 0.001; t= 2.026, p= 0.006; t= 2.722, p= 0.002; and t
= 6.197, p= 0.013, respectively). Considering the mean
percentage of improvement from the baseline Y-BOCS
total scores, the two subgroups showed significant dif-
ferences (t= 2.295, p= 0.025). OCD subgroup 1

presented an improvement of 39.49 ± 21.81%, and OCD
subgroup 2 demonstrated an improvement of 28.06 ±
19.85%. Moreover, 62.5% of the patients in OCD sub-
group 1 were responders, whereas only 32% of patients in
OCD subgroup 2 were responders (χ2= 6.197, p= 0.013)
(Fig. 2). The average medication dosage of each subgroup
was provided in the Supplementary Results section in the
supplement.
Two subgroups also presented different patterns of

brain abnormalities in the selected rsFC features. After
Bonferroni corrections, the two subgroups showed sig-
nificant differences in rsFC between the medial frontal
gyrus (mFG) and anterior cingulate cortex (ACC),
between the middle temporal gyrus (MTG) and insula,
between the MTG and postcentral gyrus, between the
MTG and superior frontal gyrus (SFG), between the
postcentral gyrus and mFG, between the precuneus and
cuneus, between the precuneus and SFG, between the
SFG and mFG, and between the temporal pole and mFG
(Fig. 3). Although OCD subgroup 1 demonstrated sig-
nificant differences in rsFC between the occipital cortex
and precuneus and rsFC between the superior temporal
gyrus and mFG compared with HCs (Figure S3 in the
supplement), subgroup 2 exhibited significant differences
in rsFC related to the SFG, mFG, ACC, putamen, para-
hippocampal gyrus, angular gyrus, and lingual gyrus
compared with rsFC in those regions in the HCs (Figure
S4 in the supplement).
To explore the effects of presence or absence of follow-

up visit on each OCD subgroups, a further analysis was
performed. In the analyses, the subgroups with the
absence of follow-up demonstrated a significant differ-
ence in the age of onset. Regardless of the subgroups,
OCD individuals without the follow-up visit presented the
higher age of onset (F= 3.767, p= 0.013). More infor-
mation was provided in the Table S1 in the supplement.
Another sub-analysis was also conducted for examining
clinical characteristics of each subgroup, after excluding
OCD individuals received CBT during the 16-week period
(e.g., 15 patients received combined SSRI and CBT, 1
patient was provided CBT only), and the results were the
same with the whole-group analysis. Further results of the
sub-analysis were described in the Supplementary Results
section and Table S2 in the supplement.
In addition, we also conducted an exploratory clustering

analysis on OCD individuals with follow-up visit (n= 76)
to confirm that the presence of follow-up visit did not
affect the results of clustering analysis. Consistent with
the main result, the improvement of Y-BOCS total score,
obsession score, and compulsion score were significantly
different, but those scores at the follow-up showed dif-
ferences at the trend level. The patterns of brain
abnormalities of OCD subgroups were also consistent
with the main result. However, two features of OCD

Table 2 continued

OCD

subgroup 1

(n= 38)

OCD

subgroup 2

(n= 69)

Statistical

analysis

Mean (SD) Mean (SD) χ2/t p value

16-week follow-up†

16-week YBOCS_T 15.50 (7.73) 19.20 (7.69) −2.234 0.029*

16-week YBOCS_O 8.54 (3.22) 10.26 (4.06) −1.970 0.054

16-week YBOCS_C 6.96 (3.51) 8.90 (4.16) −2.095 0.041*

16-week HAM-A 5.04 (4.98) 6.52 (4.69) −1.122 0.266

16-week HAM-D 5.12 (4.00) 7.60 (5.55) −2.002 0.049*

Improvement

Changes of

YBOCS_T

10.88 (6.81) 7.08 (5.17) 2.723 0.001**

Changes

of YBOC_O

5.46 (3.67) 3.84 (3.11) 2.026 0.006**

Changes of

YBOCS_C

5.42 (3.72) 3.28 (2.99) 2.722 0.002**

Changes HAM-A 5.25 (4.84) 4.50 (5.16) 0.581 0.563

Changes HAM-D 6.65 (5.91) 3.74 (6.08) 1.958 0.054

Responder/non-

responderª

15/9 16/34 6.197 0.013*

CBT cognitive behavioral therapy, dYBOCS dimensional Yale-Brown
Obsessive–Compulsive Scale, HAM-D Hamilton Rating Scale for Depression,
HAM-A Hamilton Rating Scale for Anxiety, IQ intelligent quotient, YBOCS_T Yale-
Brown Obsessive–Compulsive Scale total score, YBOCS_O Yale-Brown
Obsessive–Compulsive Scale obsession score, YBOCS_C Yale-Brown
Obsessive–Compulsive Scale compulsion score.
†Number of follow-up missing data were 12 in group 1 and 19 in group 2; two
individuals are also excluded in the analyses because they were outliers
(>2 standard deviation).
ªPatients with OCD who showed ≥35% reduction in Y-BOCS total score after
16 weeks of treatment.
*The mean difference is significant at the 0.05 level.
**The mean difference is significant at the 0.01 level.
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subgroup 2 in the exploratory analysis, rsFC between
temporal Pole and Claustrum and rsFC between angular
gyrus and inferior parietal lobe, were no longer sig-
nificantly different compared to those of HCs. The details
of this analysis are provided in the Supplementary Results
section and Table S3 and Figure S5 of the supplement.

Discussion
To the best of our knowledge, this is the first study to

identify medication-free OCD subgroups with different
therapeutic responses based on functional connectivity via
a data-driven approach. By using two different machine-
learning techniques, we defined two subgroups of OCD
patients with different patterns of aberrant functional
connectivity and symptom severity at 16 weeks of treat-
ment, although there were no baseline clinical char-
acteristic differences between the OCD subgroups. Our
results also highlighted that rsFC is involved not only
within the DMN network but also between the DMN and

brain regions involved in other networks, and these dif-
ferences in rsFC may contribute to therapeutic responses
in individuals with OCD.
The 35 rsFC features, which are selected to best dis-

criminate OCD patients from the controls via SVM
results, involved brain regions consistently reported in
previous studies. In particular, the mFG and temporal
cortex, which had the highest node degree among the
selected features, are key brain regions in the DMN. In a
recent OCD machine-learning study, rsFC features within
the DMN were proposed to be the best predictors of the
treatment response after CBT17. Although that study had
explored only within-network rsFC, the current results
suggested that not only within-DMN rsFC but also
functional connectivity between brain regions involved in
the DMN were critical and that rsFC features in soma-
tosensory-motor, visual and auditory, and cingulo-
opercular networks were associated with clinical symp-
tom severity improvement. Based on OCD subgroup

Fig. 2 The comparision of clinical information between OCD subgroups. Boxplots indicates the comparison of the improvement Yale-Brown
Obsessive–Compulsive Scale (Y-BOCS) in the a total scores (YBOCS_T), b obsession scores (YBOCS_O), and c compulsion (YBOCS_C) scores at the 16-
week follow-up visit between the patients with obsessive–compulsive disorder (OCD) subgroups. All three scores showed significant group
differences (t= 2.723, p= 0.001; t= 2.026, p= 0.006; t= 2.722, p= 0.002, respectively) d the pie chart demonstrated the percentage of patients with
OCD showing sufficient response (OCD-R) and OCD patients did not achieve the improvement (OCD-NR) between two OCD subgroups. In the chart,
subgroup 1 demonstrated significantly higher percentages of OCD-R (χ2= 6.197, p= 0.013).
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2 showing relatively increased rsFC in selected brain
features, the current study suggests that this subgroup
may unnecessarily waste its brain resources, and such
inefficiency of resources may contribute to the therapeutic
response in OCD patients.
Based on the current results, we speculate that the

preservation of rsFC of DMN regions may be associated
with the efficacy of pharmacotherapy or CBT. One pos-
sible explanation is related to the function of the DMN.
Considering its major role in self-referential processing,
abnormal functions in DMN regions may cause pre-
occupation of self-oriented intrusive obsessive thoughts
or dysfunctional evaluations of one’s own behavioral
performance62,63. From the neurocognitive perspective,
OCD subgroup 2 may have more neurocognitive deficits
in self-referential processing, especially in judgments
related to one’s own characteristics64. Neurocognitive
performance is known to be specifically related to dor-
somedial prefrontal DMN subsystems, mainly involving
the mFG and temporal pole65. As only a few OCD neu-
rocognitive studies have explored dysfunction in self-
referential processing, future studies are necessary to
verify the relationship between self-referential function
and treatment response in patients with OCD. Another

possible explanation is the underlying mechanisms of
therapeutic interventions. Indeed, SSRIs and CBT are
popular first-line interventions not only for OCD but also
for various anxiety disorders and depressive disorders. In
anxiety or depressive disorder studies with SSRI or CBT
interventions, many studies have found that baseline
frontotemporal region volumes or rsFC were associated
with postintervention clinical improvements66–72. These
results may suggest possible relationships between the
DMN and the efficacy of therapeutic interventions across
psychiatric disorders with high comorbidities. To clarify
these relationships, further studies with three patient
groups, including patients with OCD, depressive disorder,
and anxiety disorder, are highly encouraged.
Interestingly, the current study demonstrated that the

OCD subgroups showed differences in improvements in
symptom severity after therapeutic treatment, although
there were no demographic or clinical characteristic dif-
ferences between the subgroups in their baseline assess-
ments. By using brain-based features, the current study
overcomes the limitations of phenotype-based markers.
Even though the two subgroups showed no significant
differences in the phenotype, there was the possibility that
the same phenotype may have originated from different

Fig. 3 A visualization represents differences between OCD subgroup 1 (OCD1) and OCD subgroup 2 (OCD2) in the selected resting-state
functional connectivity (rsFC). The rsFC is represented as a connection lines between two brain regions. Within the same network connections are
colored in red, and connections between two different networks are colored in gray. a right hemisphere, b left hemisphere. c Node degree of each
brain region. ACC anterior cingulate cortex, INS insula, mFG medial frontal gyrus, MTG middle temporal gyrus, Pcu precuneus, PreC precentral gyrus,
SFG superior frontal gyrus.
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underlying mechanisms, or different degrees of abnorm-
alities in several brain regions may not have been pre-
sented at the phenotype level but may have contributed to
the prognosis of the disorder. Similar to other recent
machine-learning studies in the medical field, the results
of the current study suggested that brain connectivity-
based predictors of treatment responses seem to be more
successful than the previous phenotype-based pre-
dictors73–75. In particular, applications of the multivariate
approach will result in a more predictive model, with its
advantages of a more comprehensive reflection of brain
complexity. Further studies on developing prediction
models for individual patients based on multiple brain
features are also highly suggested. This approach may
provide clues for the clinical setting in which two different
patients with similar demographic backgrounds and
clinical characteristics show different therapeutic
responses. Moreover, prospective studies that aim to
prove causality between abnormal brain connectivity at
baseline and therapeutic response are required to clarify
these relationships. As increasing evidence suggests that
data-derived subgroups of patients show better predic-
tions in treatment outcomes than the current diagnostic
system, the application of machine learning may hasten
the era of precision psychiatry 73,76,77.
The current study exhibits some potential limitations,

and a cautious interpretation of the results is warranted
for the following reasons. First, validation of the result in a
fully independent sample is necessary. Although we
applied cross-validation analyses to avoid the overfitting
issue, there could be expected cohort-specific com-
pounding features, such as age, population of comorbid
psychiatric disorders, and IQ. To construct a reliable set
of rsfMRI-based biomarkers, generalization to other
samples in other centers is highly recommended. Second,
comorbidity status was not evaluated using the Structured
Clinical Interview for the Diagnostic and Statistical
Manual of Mental Disorders (SCID). The absence of
clinical interview may suggest insufficient consideration
of comorbidities. However, the present study included the
evaluation of comorbidity status in the usual clinical set-
ting by certified psychiatrist and the assessment of base-
line anxiety and depressive symptoms to explore clinical
characteristics of the patient subgroups. Third, the cur-
rent study is an observational study, so the medication
and its dosage across individuals varied. However, all
patients were under the same treatment conditions, and
the two groups showed similar therapeutic strategies, as
we mentioned in the results. However, a randomized
controlled trial is highly recommended in future studies
to eliminate possible confounding factors from various
medication strategies.
The current study suggested that not only baseline

functional connectivity within the DMN but also baseline

functional connectivity between the DMN and other
networks were associated with future therapeutic
responses in OCD patients. The application of machine-
learning analyses with a multivariate approach helped to
construct neurobiologically homogeneous OCD sub-
groups with different therapeutic response rates to the
initial treatments. As phenotype-based predictive bio-
markers of OCD have reported inconsistent findings, the
application of a multivariate approach is encouraged to
evaluate the interactions of various brain systems at the
same time. Although more original and replication
studies are required, the present study will shed light on
the discovery of predictive biomarker in the psychiatric
field.
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